The Schrodinger equation with an anharmonic oscillator potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13173
(http://iopscience.iop.org/0305-4470/13/1/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 20:05

Please note that terms and conditions apply.

The Schrödinger equation with an anharmonic oscillator potential

P M Radmore
Department of Mathematics, Imperial College, London, UK.

Received 4 January 1979

Abstract

The Liouville-Green uniform asymptotic method is used to obtain approximate eigenvalues and eigenfunctions of the one-dimensional Schrödinger equation with an anharmonic oscillator potential. The term neglected in the basic differential equation, in accordance with the method, is studied in some detail.

1. Introduction

In a recent paper (Stephenson 1977), the Liouville-Green technique was used to obtain the eigenvalues of the Schrödinger equation with a radial Gaussian potential. Recent work on the anharmonic oscillator (e.g. Gillespie 1976, Fung et al 1978, Banerjee et al 1978) has led to computation and comparison of the eigenvalues of the Schrödinger equation. In view of the fact that the Liouville-Green technique and other so-called semi-classical methods are not as widely applied as they might be (Berry and Mount 1972), and of the importance of the anharmonic oscillator potential in nuclear structure, quantum chemistry and quark confinement, we now use the same method for this potential. The eigenvalues obtained are compared with those found by direct methods.

2. The basic transformation

Setting $2 m=\hbar=1$, the one-dimensional Schrödinger equation with an anharmonic oscillator potential $V=x^{2}+x^{4}$ is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}=\left(-E+x^{2}+x^{4}\right) \psi \tag{2.1}
\end{equation*}
$$

where E is the energy and the boundary conditions are $\psi(\infty)=\psi(-\infty)=0$. We make the Liouville-Green transformation

$$
\begin{equation*}
x=x(\xi), \quad \psi(x)=\left(\xi^{\prime}\right)^{-1 / 2} G(\xi) \tag{2.2}
\end{equation*}
$$

where primes denote differentiation with respect to x, so that (2.1) becomes

$$
\begin{equation*}
\mathrm{d}^{2} G / \mathrm{d} \xi^{2}=\left(P(x) / \xi^{\prime 2}+\Delta(x)\right) G \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
P(x)=x^{4}+x^{2}-E \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta(x)=\xi^{\prime \prime \prime} / 2 \xi^{\prime 3}-3 \xi^{\prime \prime 2} / 4 \xi^{\prime 4} \tag{2.5}
\end{equation*}
$$

When E is positive, $P(x)$ has two zeros $x= \pm x_{0}$ where

$$
\begin{equation*}
x_{0}=\left\{\left[-1+(1+4 E)^{1 / 2}\right] / 2\right\}^{1 / 2} \tag{2.6}
\end{equation*}
$$

these being the classical turning points.
The Liouville-Green technique consists in choosing $\xi(x)$ so that $\Delta(x)$ is a small bounded function and (2.3), with $\Delta(x)$ neglected, is soluble in terms of known functions. Two ways of achieving this will be presented. First, since (2.1) has two turning points, we may try to choose $\xi(x)$ so that, after neglecting $\Delta(x)$, (2.3) becomes the standard two-turning-point equation, namely the Weber equation

$$
\begin{equation*}
\mathrm{d}^{2} G / \mathrm{d} \xi^{2}=\left(\xi^{2} / 4-\lambda\right) G \tag{2.7}
\end{equation*}
$$

the solutions of which are the parabolic cylinder functions, where λ is a parameter. Alternatively, since $P(x)$ depends only on x^{2}, the wavefunctions $\psi(x)$ will be either even or odd functions and we can consider the problem for $x \geqslant 0$, applying the additional boundary condition that either $\psi(0)=0$ or $\psi^{\prime}(0)=0$. In this case, since $P(x)$ has only one zero for $x \geqslant 0$, we may try to choose $\xi(x)$ so that (2.3) becomes the Airy equation

$$
\begin{equation*}
\mathrm{d}^{2} G / \mathrm{d} \xi^{2}=(\xi-a) G \tag{2.8}
\end{equation*}
$$

after neglecting $\Delta(x)$, where a is a parameter to be determined from the boundary conditions.

Both approaches lead to approximate eigenvalues and eigenfunctions (Olver 1974).

3. The Weber equation method

With the choice

$$
\begin{equation*}
\xi^{\prime 2}\left(\xi^{2} / 4-\lambda\right)=P(x) \tag{3.1}
\end{equation*}
$$

(2.3) becomes the Weber equation (2.7), if we neglect $\Delta(x)$. Assuming for the moment that this is justified, we find by integration of (3.1) that for $x \geqslant x_{0}$,
$\frac{1}{2} \xi\left(\xi^{2}-4 \lambda\right)^{1 / 2}-2 \lambda \ln \left|\xi+\left(\xi^{2}-4 \lambda\right)^{1 / 2}\right|+2 \lambda \ln (2 \sqrt{\lambda})=2 \int_{x_{0}}^{x}(P(t))^{1 / 2} \mathrm{~d} t$,
while between the turning points

$$
\begin{equation*}
\frac{\xi}{2}\left(4 \lambda-\xi^{2}\right)^{1 / 2}+2 \lambda \sin ^{-1}\left(\frac{\xi}{2 \sqrt{\lambda}}\right)=2 \int_{0}^{x}(-P(t))^{1 / 2} \mathrm{~d} t \tag{3.3}
\end{equation*}
$$

The constants of integration have been chosen so that $\xi=0$ when $x=0$ and $\xi= \pm 2 \sqrt{\lambda}$ correspond to $x= \pm x_{0}$. Putting $x=x_{0}$ in (3.3) we obtain

$$
\begin{equation*}
\lambda \pi=2 \int_{0}^{x_{0}}\left(E-t^{2}-t^{4}\right)^{1 / 2} \mathrm{~d} t . \tag{3.4}
\end{equation*}
$$

The boundary conditions $\psi(\infty)=\psi(-\infty)=0$ correspond to $G(\infty)=G(-\infty)=0$ and bounded solutions of the Weber equation satisfying these conditions exist only if

$$
\begin{equation*}
\lambda=n+\frac{1}{2}, \tag{3.5}
\end{equation*}
$$

where $n=0,1,2, \ldots$.
Substituting (3.5) into (3.4) gives

$$
\begin{equation*}
\frac{\pi}{2}\left(n+\frac{1}{2}\right)=\int_{0}^{x_{0}}\left(E-t^{2}-t^{4}\right)^{1 / 2} \mathrm{~d} t \tag{3.6}
\end{equation*}
$$

which is the Bohr-Sommerfeld quantisation formula, on noticing that

$$
\begin{equation*}
\int_{0}^{x_{0}}\left(E-t^{2}-t^{4}\right)^{1 / 2} \mathrm{~d} t=\frac{1}{2} \int_{-x_{0}}^{x_{0}}\left(E-t^{2}-t^{4}\right)^{1 / 2} \mathrm{~d} t \tag{3.7}
\end{equation*}
$$

Using (3.6), the eigenvalues have been computed and in table 1 are compared with accurate values calculated by Banerjee et al (1978) using scaled bases. The two sets of values are in close agreement, the accuracy increasing with increasing n.

Table 1. Eigenvalues computed using equation (3.6) are compared with accurate values calculated by Banerjee et al (1978) using scaled bases.

n	Eigenvalue	Accurate eigenvalue	Approximate percentage error
0	1.2508	1.3924	10.17
1	4.5926	4.6488	1.21
2	8.6130	8.6550	0.49
3	13.1231	13.1568	0.26
4	18.0290	18.0576	0.16
5	23.2725	23.2974	0.11
6	28.8130	28.8353	0.077
7	34.6206	34.6408	0.058
8	40.6717	40.6904	0.046
9	46.9477	46.9650	0.037
10	53.4329	53.4491	0.03
20	127.6076	127.6178	0.008
30	214.7721	214.7797	0.0035
40	311.8254	311.8315	0.002
50	417.0512	417.0563	0.0012
100	1035.5422	1035.5442	0.0002

We now examine the neglected term $\Delta(x)$. From (2.4) and (3.1) we have

$$
\begin{equation*}
\xi^{\prime}=\left[\left(-E+x^{2}+x^{4}\right) /\left(\xi^{2} / 4-\lambda\right)\right]^{1 / 2} \tag{3.8}
\end{equation*}
$$

from which $\xi^{\prime \prime}$ and $\xi^{\prime \prime \prime}$ can be calculated in terms of x and ξ and, using (2.5), $\Delta(x)$ can be written out explicitly as

$$
\begin{equation*}
\Delta(x)=\frac{\left(3 \xi^{2}+8 \lambda\right)}{64\left(\xi^{2} / 4-\lambda\right)^{2}}-\left(\xi^{2} / 4-\lambda\right) \frac{\left[2 E+(12 E+3) x^{2}+6 x^{4}+8 x^{6}\right]}{4\left(-E+x^{2}+x^{4}\right)^{3}} \tag{3.9}
\end{equation*}
$$

At the turning points, although both terms in (3.9) diverge, we can show that $\Delta(x)$ tends to a finite limit, as follows:

Using L'Hôpital's rule in (3.8), we have

$$
\begin{equation*}
L_{1}=\lim _{x \rightarrow x_{0}} \xi^{\prime}=\left(\frac{2 x_{0}+4 x_{0}^{3}}{\sqrt{\lambda}}\right)^{1 / 3} \tag{3.10}
\end{equation*}
$$

By differentiation of (3.8) and use of L'Hôpital's rule, we find

$$
\begin{equation*}
L_{2}=\lim _{x \rightarrow x_{0}} \xi^{\prime \prime}=\frac{\left(4+24 x_{0}^{2}-L_{1}^{4}\right)}{10 L_{1}^{2} \sqrt{\lambda}} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{3}=\lim _{x \rightarrow x_{0}} \xi^{\prime \prime \prime}=\frac{\left(48 x_{0} \sqrt{\lambda}-24 \lambda L_{1} L_{2}^{2}-9 \sqrt{\lambda} L_{1}^{3} L_{2}\right)}{14 \lambda L_{1}^{2}} \tag{3.12}
\end{equation*}
$$

L_{1}, L_{2} and L_{3} are non-zero and finite so that by (2.5), $\Delta(x)$ tends to a finite limit given by

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \Delta(x)=\frac{L_{3}}{2 L_{1}^{3}}-\frac{3}{4} \frac{L_{2}^{2}}{L_{1}^{4}} . \tag{3.13}
\end{equation*}
$$

The values of $\Delta(x)$ have been computed by first finding ξ for a given x from (3.2) or (3.3) and then substituting in (3.9), with the value at the turning point given by (3.13). The results are shown in figures 1 and 2 for selected values of n and indicate that $\Delta(x)$ attains its absolute maximum at $x=0$, this value decreasing with increasing n, and that $\Delta(x)$ is a small, bounded, slowly varying function.

Figure 1. $\Delta(x)$ against x, for $n=0,1,2$.

Figure 2. $\Delta(x)$ against x, for $n=5,10$.

4. The Airy equation method

Here we consider $x \geqslant 0$, and with the choice

$$
\begin{equation*}
\xi^{\prime 2}(\xi-a)=P(x) \tag{4.1}
\end{equation*}
$$

(2.3) becomes the Airy equation (2.8) on neglecting $\Delta(x)$. We then find by integration of (4.1) that for $x \geqslant x_{0}$,

$$
\begin{equation*}
\frac{2}{3}(\xi-a)^{3 / 2}=\int_{x_{0}}^{x}(P(t))^{1 / 2} \mathrm{~d} t, \tag{4.2}
\end{equation*}
$$

the constant of integration being chosen so that $x=x_{0}$ corresponds to $\xi=a$. For $0 \leqslant x \leqslant x_{0}$, we have

$$
\begin{equation*}
\frac{2}{3} a^{3 / 2}-\frac{2}{3}(a-\xi)^{3 / 2}=\int_{0}^{x}(-P(t))^{1 / 2} \mathrm{~d} t \tag{4.3}
\end{equation*}
$$

where $x=0$ corresponds to $\xi=0$. Substituting $x=x_{0}$ into (4.3), we obtain

$$
\begin{equation*}
\frac{2}{3} a^{3 / 2}=\int_{0}^{x_{0}}\left(E-t^{2}-t^{4}\right)^{1 / 2} \mathrm{~d} t . \tag{4.4}
\end{equation*}
$$

The required solution of (2.8) is the Airy function $\mathrm{Ai}(\xi-a)$, since this satisfies the boundary condition $G(\infty)=0$. We can now find the parameter a from the additional condition that either $G^{\prime}(0)=0$ or $G(0)=0$ corresponding to even and odd wavefunctions respectively, since this condition implies that either $\mathrm{Ai}^{\prime}(-a)=0$ or $\mathrm{Ai}(-a)=0$. Hence $-a$ is the position of either a turning point or a zero of the Airy function Ai. The values of a obtained from Abramowitz and Stegun (1964, p 478) were used to compute the eigenvalues using (4.4). The results are shown in table 2 and compare favourably with accurate values.

Table 2. Values of a obtained from Abramowitz and Stegun (1964) were used to compute the eigenvalues using equation (4.4).

	a from $\mathrm{Ai}^{\prime}(-a)=0$	a from $\mathrm{Ai}(-a)=0$	Eigenvalue	Accurate eigenvalue
0	1.01879		1.0706	1.3924
1		2.33811	4.6573	4.6488
2	3.24820		8.5471	8.6550
3		4.08795	13.1605	13.1568
4	4.82010		17.9849	18.0576
5		5.52056	23.3000	23.2974
6	6.16331		28.7788	28.8353
7		6.78671	34.6428	34.6408
8	7.37218		40.6433	40.6904
9			4.94413	46.9666
10	8.48849		53.4084	46.9650
11			60.1310	53.4491
12	9.53545	10.04017	66.9589	66.1295
13			74.0371	74.0350
14	10.52766	11.00852	81.2108	81.2435
15			88.6115	88.6103
16	11.47506	11.93602	96.0998	96.1296
17			103.7966	103.7953
18	12.38479		12.82878	119.5743

The connection between (3.6) and (4.4) can be seen by noting that the leading order term in the asymptotic expansion of a is

$$
\begin{equation*}
a \sim\left[\frac{3}{4} \pi\left(n+\frac{1}{2}\right)\right]^{2 / 3} \tag{4.5}
\end{equation*}
$$

where $n=0,1,2, \ldots$ (see Abramowitz and Stegun p 450).

The neglected term $\Delta(x)$ in this case is given by

$$
\begin{equation*}
\Delta(x)=\frac{5}{16(\xi-a)^{2}}-(\xi-a) \frac{\left[2 E+(12 E+3) x^{2}+6 x^{4}+8 x^{6}\right]}{4\left(-E+x^{2}+x^{4}\right)^{3}} \tag{4.6}
\end{equation*}
$$

and we can again show that $\Delta(x)$ tends to a finite limit at the turning point $x=x_{0}$. Using the results

$$
\begin{align*}
& K_{1}=\lim _{x \rightarrow x_{0}} \xi^{\prime}=\left(2 x_{0}+4 x_{0}^{3}\right)^{1 / 3}, \tag{4.7}\\
& K_{2}=\lim _{x \rightarrow x_{0}} \xi^{\prime \prime}=\frac{\left(2+12 x_{0}^{2}\right)}{5 K_{1}^{2}}, \tag{4.8}\\
& K_{3}=\lim _{x \rightarrow x_{0}} \xi^{\prime \prime \prime}=\frac{12}{7 K_{1}^{2}}\left(2 x_{0}-K_{1} K_{2}^{2}\right), \tag{4.9}
\end{align*}
$$

we obtain from (2.5)

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \Delta(x)=\frac{3}{28 K_{1}^{5}}\left(16 x_{0}-15 K_{1} K_{2}^{2}\right) \tag{4.10}
\end{equation*}
$$

The results of computing $\Delta(x)$ for selected values of a are shown in figures 3 and 4 .

Figure 3. $\Delta(x)$ against x, for selected values of $a(n=0,1)$.

Figure 4. $\Delta(x)$ against x, for selected values of $a(n=2,3,4)$.

5. Discussion

The method presented here depends on the initial choice of $\xi(x)$. Consider for example the Weber equation method. The exact relation between ξ and x is given by

$$
\begin{equation*}
\left(\frac{1}{4} \xi^{2}-\lambda\right)-\frac{P(x)}{\xi^{\prime 2}}=\frac{\xi^{\prime \prime \prime}}{2 \xi^{\prime 3}}-\frac{3}{4} \frac{\xi^{\prime \prime 2}}{\xi^{\prime 4}}, \tag{5.1}
\end{equation*}
$$

and on neglecting the right-hand side, we obtain (3.1). The next approximation would then be

$$
\begin{equation*}
\left(\frac{1}{4} \xi^{2}-\lambda\right)-P(x) / \xi^{\prime 2}=\Delta(x(\xi)) \tag{5.2}
\end{equation*}
$$

from which we see that

$$
\begin{equation*}
\int_{0}^{x_{0}}(-P(x))^{1 / 2} \mathrm{~d} x=\int_{0}^{\xi_{0}}\left\{\lambda-\frac{1}{4} \xi^{2}+\Delta(x(\xi))\right\}^{1 / 2} \mathrm{~d} \xi \tag{5.3}
\end{equation*}
$$

where ξ_{0} is given by

$$
\begin{equation*}
\lambda-\frac{1}{4} \xi_{0}^{2}+\Delta\left(x\left(\xi_{0}\right)\right)=0 . \tag{5.4}
\end{equation*}
$$

Except for the case $n=0, \Delta(x)$ is negative at the turning point $x=x_{0}$ (corresponding to $\xi=2 \sqrt{\lambda}$), so that $\xi_{0}<2 \sqrt{\lambda}$. Hence an upper bound for the right-hand side of (5.3) is

$$
\begin{equation*}
2 \sqrt{\lambda}(\lambda+\Delta(0))^{1 / 2} \tag{5.5}
\end{equation*}
$$

which, from (5.3), gives an upper bound for the eigenvalues in this approximation. For upper and lower bounds derived using the WKB approximation, see Birx and Houk 1977.

The approximate eigenfunctions follow from (2.7) or (2.8) and the transformation (2.2).

A wide class of potentials can be treated in a similar manner, for example the interaction of the type $\lambda x^{2} /\left(1+g x^{2}\right)$ (see Mitra 1978).

Acknowledgments

I am grateful to the Science Research Council for the award of a Postgraduate Studentship, and to P John for valuable discussions concerning the computing.

References

Abramowitz H and Stegun I A 1964 Handbook of Mathematical Functions (New York: Dover)
Banerjee K, Bhatnagar: S P, Choudhury V and Konwal S S 1978 Proc. R. Soc. A 360575
Berry M V and Mount K E 1972 Rep. Prog. Phys. 35315
Birx D L and Houk T W 1977 Am. J. Phys. 451070
Fung Y T, Chan Y W and Wan W Y 1978 J. Phys. A: Math. Gen. 11829
Gillespie G H 1976 Lett. Nuovo Cim. 1686
Mitra A K 1978 J. Math. Phys. 192018
Olver F W J 1974 Introduction to Asymptotics and Special Functions (London: Academic)
Stephenson G 1977 J. Phys. A: Math. Gen. 10 L229

