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The Schrodinger equation with an anharmonic 
oscillator potential 

P M Radmore 
Department of Mathematics, Imperial College, London, UK. 

Received 4 January 1979 

Abstract. The Liouville-Green uniform asymptotic method is used to obtain approximate 
eigenvalues and eigenfunctions of the one-dimensional Schrodinger equation with an 
anharmonic oscillator potential. The term neglected in the basic differential equation, in 
accordance with the method, is studied in some detail. 

1. Introduction 

In a recent paper (Stephenson 1977), the Liouville-Green technique was used to obtain 
the eigenvalues of the Schrodinger equation with a radial Gaussian potential. Recent 
work on the anharmonic oscillator (e.g. Gillespie 1976, Fung et a1 1978, Banerjee et a1 
1978) has led to computation and comparison of the eigenvalues of the Schrodinger 
equation. In view of the fact that the Liouville-Green technique and other so-called 
semi-classical methods are hot as widely applied as they might be (Berry and Mount 
1972), and of the importance of the anharmonic oscillator potential in nuclear struc- 
ture, quantum chemistry and quark confinement, we now use the same method for this 
potential. The eigenvalues obtained are compared with those found by direct methods. 

2. The basic transformation 

Setting 2m = h = 1, the one-dimensional Schrodinger equation with an anharmonic 
oscillator potential v = x 2  + x 4  is 

-= d2* ( - - E + x 2 + x 4 ) $ ,  
d x  

where E is the energy and the boundary conditions are $(CO) = $(-a) = 0. We make 
the Liouville-Green transformation 

x = x ( 5 ) ,  44x1 = ( 5 ’ ) - ” 2 G ( 5 ) ,  (2.2) 

d2G/dt2 = ( P ( x ) / ( ”  + A ( x ) ) G ,  

P ( x )  = x 4 + x 2 -  E (2.4) 

where primes denote differentiation with respect to x ,  so that (2.1) becomes 

(2.3) 
where 
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and 

A ( x )  = ("'/2.f3 - 3f'2/4('4. 

When E is positive, P ( x )  has two zeros x = 3x0 where 

x,={[-1+(1+4E)'/2]/2}1/2, (2.6) 

these being the classical turning points. 
The Liouville-Green technique consists in choosing ( ( x )  so that A ( x )  is a small 

bounded function and (2.3), with A ( x )  neglected, is soluble in terms of known functions. 
Two ways of achieving this will be presented. First, since (2.1) has two turning points, 
we may try to choose [ ( x )  so that, after neglecting A ( x ) ,  (2.3) becomes the standard 
two-turning-point equation, namely the Weber equation 

d2G/dc2 = (('14 - A)G, (2.7) 

the solutions of which are the parabolic cylinder functions, where A is a parameter. 
Alternatively, since P ( x )  depends only on x 2 ,  the wavefunctions + ( x )  will be either even 
or odd functions and we can consider the problem for x L 0, applying the additional 
boundary condition that either $(O) = 0 or $ ' (O)  = 0. In this case, since P ( x )  has only 
one zero for x L 0, we may try to choose f ( x )  so that (2.3) becomes the Airy equation 

d2G/d(' = ((-a)G, (2.8) 

after neglecting A ( x ) ,  where a is a parameter to be determined from the boundary 
conditions. 

Both approaches lead to approximate eigenvalues and eigenfunctions (Olver 1974). 

3. The Weber equation method 

With the choice 

("(( '/~-A)=P(x), (3.1) 

(2.3) becomes the Weber equation (2.7), if we neglect A ( x ) .  Assuming for the moment 
that this is justified, we find by integration of (3.1) that for x L xo, 

$(((2-4A)1/2-2A lnl(+(~'-4A)'/'1+2A ln(2Jh) = 2 1' (P(t))'/'dt, (3.2) 
xo 

while between the turning points 

g(4A - (')'/' + 2A sin-' (5) = 2 lox (-P(t))'/' dt. 
2 

(3.3) 

The constants of integration have been chosen so that ( = 0 when x = 0 and ( = *2& 
correspond to x = fxo. Putting x = x o  in (3.3) we obtain 

A V  = 2 (E - t2-t4)'/' dt. loX0 (3.4) 
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The boundary conditions I(/(co) = I(/(-co) = 0 correspond to G(co) = G(-co) = 0 and 
bounded solutions of the Weber equation satisfying these conditions exist only if 

A = n + i ,  (3.5) 

where n = 0, 1,2, . . . . 
Substituting (3.5) into (3.4) gives 

?r - ( n  + $1 = Joxo (E - tZ  - t4 ) ' l2  dt, 
2 

which is the Bohr-Sommerfeld quantisation formula, on noticing that 

(3.6) 

Using (3.6), the eigenvalues have been computed and in table 1 are compared with 
accurate values calculated by Banerjee eta/ (1978) using scaled bases. The two sets of 
values are in close agreement, the accuracy increasing with increasing n. 

Table 1. Eigenvalues computed using equation (3.6) are compared with accurate values 
calculated by Banerjee et a1 (1978) using scaled bases. 

n Eigenvalue Accurate Approximate 
eigenvalue percentage error 

0 1.2508 1.3924 10.17 
1 4,5926 4.6488 1.21 
2 8,6130 8.6550 0.49 
3 13.1231 13.1568 0.26 
4 18.0290 18.0576 0.16 
5 23.2725 23.2974 0.11 
6 28.8130 28.8353 0.077 
7 34.6206 34,6408 0.058 
8 40.6717 40,6904 0.046 
9 46.9477 46.9650 0,037 

10 53.4329 53,4491 0.03 
20 127.6076 127.6178 0.008 
30 214,7721 214.7797 0.0035 
40 311.8254 311.8315 0,002 
50 417.0512 417.0563 0.0012 

100 1035.5422 1035.5442 0.0002 

We now examine the neglected term A ( x ) .  From (2.4) and (3.1) we have 

6' = [(-E + x 2  + x4)/(t2/4 (3.8) 

from which 6" and 5"' can be calculated in terms of x and 6 and, using (2.5), A ( x )  can be 
written out explicitly as 

9 (3.9) (362+ - (,$'/4-A) [2E+ (12E +3)x2+6x4+ 8 x 6 ]  
64(eZ/4-A)' 4(-E + x Z  + x ~ ) ~  

A ( x )  = 

At the turningpoints, although both terms in (3.9) diverge, we can show that A ( x )  tends 
to a finite limit, as follows: 
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Using L’HGpital’s rule in (3.8), we have 
3 1/3 2x0 + 4x0 L~ = lim ( I =  ( J h  ) 

X’XO 

By differentiation of (3.8) and use of L’HGpital’s rule, we find 

(4 + 2 4 ~ ;  - L:) L2 = lim ( I 1  = 
x +)xo IOL:JA 

and 

(3.10) 

(3.11) 

(3.12) 

L1, L2 and L3 are non-zero and finite so that by (2.5), A(x) tends to a finite limit given by 

L3 3 Li; 
X’XO 2L: 4 Lf ‘  
lim A(x)=--- -- (3.13) 

The values of A(x) have been computed by first finding 5 for a given x from (3.2) or 
(3.3) and then substituting in (3.9), with the value at the turning point given by (3.13). 
The results are shown in figures 1 and 2 for selected values of n and indicate that A(x) 
attains its absolute maximum at x = 0, this value decreasing with increasing n, and that 
A(x) is a small, bounded, slowly varying function. 

1 0 021 

Figure 1. 4(x )  against x, for n = 0, I, 2. Figure 2. 4 ( x )  against x. for n = 5, lO.  

4. The Airy equation method 

Here we consider x L 0, and with the choice 

5’2(5 - a )  = P ( x > ,  (4.1) 

(2.3) becomes the Airy equation (2.8) on neglecting A(x). We then find by integration 
of (4.1) that for x L xO, 

&- = lx: (P(t))’l2 dt, (4.2) 
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the constant of integration being chosen so that x = x o  corresponds to .$=a. For 
0 6 x 6 x o ,  we have 

$a3 /* -$ (a  - = ( -P(f))”’  dt, 16 
where x = 0 corresponds to 5 = 0. Substituting x = xo into (4.3), we obtain 

(4.3) 

The required solution of (2.8) is the Airy function Ai(6- a) ,  since this satisfies the 
boundary condition G(m) = 0. We can now find the parameter a from the additional 
condition that either G’(0) = 0 or G(0) = 0 corresponding to even and odd wavefunc- 
tions respectively, since this condition implies that either Ai’(-a) = 0 or Ai(-a) = 0. 
Hence -a is the position of either a turning point or a zero of the Airy function Ai. The 
values of a obtained from Abramowitz and Stegun (1964, p 478) were used to compute 
the eigenvalues using (4.4). The results are shown in table 2 and compare favourably 
with accurate values. 

Table 2. Values of a obtained from Abramowitz and Stegun (1964) were used to compute 
the eigenvalues using equation (4.4). 

a from a from Accurate 
n Ai’(-a) = 0 Ai(-a) = 0 Eigenvalue eigenvalue 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.01 879 

3.24 820 

4.82 010 

6.16 331 

7.37 218 

8.48 849 

9.53 545 

10.52 766 

11.47 506 

12.38 479 

2.33 811 

4.08 795 

5.52 056 

6 ~ 7 8  671 

7.94 413 

9.02 265 

10.04 017 

11.00 852 

11.93 602 

12.82 878 

1,0706 
4.6573 
8.5471 

13,1605 
17,9849 
23,3000 
28,7788 
3 4 6 4 2 8 
40.6433 
46,9666 
53,4084 
60.1310 
66,9589 
74.0371 
81.2108 
88.6115 
96.0998 

103.7966 
11 1.5743 
119.5454 

1.3924 
4.6488 
8.6550 

13.1568 
18.0576 
23.2974 
28.8353 
34.6408 
40.6904 
46.9650 
53.4491 
60.1295 
66.9950 
74.0359 
81.2435 
88,6103 
96,1296 

103.7953 
111.6018 
1194442 

The connection between (3.6) and (4.4) can be seen by noting that the leading order 

(4.5) 

term in the asymptotic expansion of a is 

a - [ b ( n  +I)] 1 2 / 3  

where n = 0,1,2,  , . , (see Abramowitz and Stegun p 450). 
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The neglected term A ( x )  in this case is given by 

5 
16(t - a)* 

[2E + (12E + 3 ) x 2 - t  6x4+8x6] 
A(x) =--- 4 ( - E + x ’ + ~ ~ ) ~  9 

and we can again show that A ( x )  tends to a finite limit at the turning point x = X O .  Using 
the results 

K 1  = X ’ X O  lim 6’ = ( 2 x 0  + 4~;)’’~, (4.7) 

( 2 +  1 2 x 3  
5K: ’ Kz = lim t” = 

X’XO 

we obtain from (2 .5 )  

(4.8) 

(4.10) 

The results of computing A ( x )  for selected values of a are shown in figures 3 and 4, 

1 1 

Figure 3. A ( x )  against x,  for selected values of 
a (n ’0,l). 

-ooiJ 

Figure 4. A ( % )  against x, for selected values of 
a (n = 2,3,4).  

5. Discussion 

The method presented here depends on the initial choice of &). Consider for example 
the Weber equation method. The exact relation between 8 and x is given by 

and on neglecting the right-hand side, we obtain (3.1). The next approximation would 
then be 

( 6 t 2 - A )  - P ( x ) / t ” =  A ( x ( t ) ) ,  ( 5 .2 )  
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from which we see that 

(5.3) 

where eo is given by 

A -a& + A(x ( t o ) )  = 0. (5.4) 
Except for the case n = 0 A(x)  is negative at the turning point x = x o  (corresponding to 
6 = 2&), so that to < 2 h .  Hence an upper bound for the right-hand side of (5.3) is 

2 h ( A  + A(0))''2, (5.5) 

which, from (5.3), gives an upper bound for the eigenvalues in this approximation. For 
upper and lower bounds derived using the WKB approximation, see Birx and Houk 
1977. 

The approximate eigenfunctions follow from (2.7) or (2.8) and the transformation 
(2.2). 

A wide class of potentials can be treated in a similar manner, for example the 
interaction of the type Ax2/(1  + g x 2 )  (see Mitra 1978). 
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